DGWSOverview

DGWS Overview

Service Overview for Client Application Developers

The Discovery Gate Web Service (DGWS) enables software developers and other web services to
consume Symyx data source content quickly and easily. The application programming interface (API)
provides predefined methods that satisfy common use-cases.

The service has been designed to enable developers to rapidly develop client applications that can take
advantage of object-otiented programming and XML. The developer uses a client-side SOAP proxy and
has the freedom to choose which programming language to use.

The DGWS API supports:

e Stateless method calls for performance, ease of testing, and scalability. Stateless APIs also reduce the
learning curve, accelerate application start-up, and facilitate integration into Service-Oriented
Architecture (SOA). This mode is optimal for workflows that involve paging hit-sets within the limits.
See “Service Request” on page 9.

* The transformation of existing stateless method calls into stateful ones with a completely transparent
and time-limited session. This mode is optimal for developing high-performance asynchronous
data-retrieval workflows that read large hit-sets to completion.

DGWS provides a single object model for all Symyx content and third-party data, both molecular and
synthetic. To enable applications to search across a wide expanse of content that historically had no
connection, Symyx created the comprehensive CompoundIndex, which de-duplicates and normalizes the
data from all the molecular and reaction data sources. For example, a method returning a top-level
molecule from the index has the ability to request the associated reaction information. The indexing from
Molecule to Reaction is bi-directional, so applications can do reaction searching, both structural and
citation-based, to return Reaction information (on top) and molecular information (underneath) from any
molecule database for each molecule associated with the reaction.

To allow the developer to attenuate the retrieval of information, a set of molecule flags and reaction flags
allow the user to specify areas of data of interest specific to each request. This flexibility allows control of
the data retrieved by each method call, whether it involves large hierarchical datasets or specific chemical
IDs. A licensing model is integrated into the retrieval flags so that search and retrieval is resolved against
the entitled sources. To enable developers to write self-configuring software, we have also provide the
ability to discover the licence’s capabilities.

The API provides flexibility:

¢ XML-based software development: many types of applications require that data be both abstract and
extensible. DGWS XML methods support application developers who use transforms like XSLT to
convert data into a user interface without having to know details about the data.

* Object-based software development: DGWS also supports rapid application development (RAD)
tools for very specific workflow applications or projects through the WSDIL-based client-proxy
supplied by many development environments and utilities, and supported by many programming
languages, such as Java and C#. Without needing to parse or generate XML, a few lines of code, with
no client-side code-base, can gain access to Symyx data from any internet connection. The service is
readable and self-documenting. Many of the constructs returned can be sent in connected requests
without any object reconstruction and filtration.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 5

DiscoveryGate Web Service

API Design Overview

The API is as self-documenting as possible when used from a SOAP client-proxy. When the WSDL has
been consumed by a development tool, such as Eclipse Helios or Microsoft Visual Studio, the methods
calls and the object-model, for both the input and output types, are somewhat self-explanatory.

All methods take a Service Request object as their first parameter. Not all of the members of this class are
used by every method, but the | i cenceKey member must be populated for every request of the setvice.

The API provides the following kinds of methods:

¢ Metadata Methods

» Udlity Methods

* Data Methods, which can return XML or Objects

Metadata Methods

Utility Methods

Data Methods

The metadata methods return information about the service itself. The most important metadata method
is get Ser vi cel nf or mat i on, which returns information about the service for the given licence key
entitlement. This method can be used to enable an application to self-configure based on the entitlements
to which the license key provides access. The metadata methods can be used by anyone with a valid
licence.

The utility methods, such as convert St ruct ur eToMol fi | e, support the developer but do not
return any content from the underlying databases. The utility methods can be used by anyone with a valid
licence.

The data methods are the most numerous and many are restricted to particular sets of database
entitlement. Data methods return content from one or more of the underlying databases. The method
name indicates what each method searches. For example, get Mol ecul esByNanes.

Methods returning content as XML have the word “XML” on the end. For example,
get Mol ecul esByNanmes XM..

If the method ends in XML, it does not necessarily return a string as its return type. Many methods,
including the ones that return XML, can return “pages” of data. Pages are returned in the form of Results
containers. The containers themselves are objects, so that the developer does not need to parse the
response to find out about the data contained in the response.

One example is DGAB. get Cat al ogsBy| dXM., which returns
Di scoveryGate. t ypes. cont ai ners. XM_Resul t s, which is the generic container for
methods returning XML.

Methods starting with get Mol ecul esBy, such as get Mol ecul esBy St r uct ur e, return molecules
at the top of the data-model, from the CompoundIndex for molecules. This index contains normalized
and de-duplicated structures from the underlying data sources. These methods also honor the retrieval
flags, which allow associated data to be returned from the underlying sources.

Methods containing the phrase Sour ceMbl ecul e, such as get Sour ceMol ecul esBySt ruct ure,
specifically target the source databases. These databases sit underneath the Molecule index in the object
model and supply the majority of the data.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWSOverview

Paging data

Retrieving data

Methods starting with get React i onsBy, such as get React i onsBySt r uct ur e, return Reaction
information from the Reaction databases. Reaction databases have retrieval flags too (see Reaction
Retrieval Flags). However, there is no overall index for reactions because all the reaction databases
conform to the same model. Specific reaction databases can be filtered out of the request by using the
sour ceFi | t er member of the Service Request.

Certain methods, such as get Mol ecul esByNanes, require that the data return be "paged" as a set of
virtual pages.

The number of hits returned from any search is limited and therefore the page member of the

Ser vi ceRequest object must be used to specify the offset (statting point) and count (nunber of hits)
to return. You would normally increment the offset with each paging operation. When the number of hits
is less than the allowed count, it means that all the hits have been returned.

For stateless searches, which are the default, the search runs for every request regardless of whether the
previous page has been requested before.

A count of zero is invalid for methods requiring page parameters to be present.

Due to the size and complexity of the Object Model, it is not obvious which data is required from each
method. Therefore, by default only the top-level of data is returned for a method. This means that only
the basic members of the return class are populated.

To specify which area of the object model is to be retrieved from an object, specify a set of Molecule and
Reaction Retrieval Flags on the Ser vi ceRequest object.

Any combination of the enumerated type, Mol ecul eRet ri eval Fl ags, can be specified on the
nmol ecul eFl ags member array. Similarly, any combination of the enumerated type,
Reacti onRetri eval Fl ags, can be specified on the r eact i onFl ags member array.

There ate a two special retrieval flags for both the Mol ecul eRet ri eval Fl ags and
Reacti onRetri eval Fl ags types:

* ID_ONLY excludes all other retrieval flags and only retrieves the molecule ID (or reaction ID) for
the Molecule (or Reaction entity) and compoundld if the method targets the source molecule entities.
ID_ONLY also allows the developer to exceed the normal count limits of the DataPage thereby
allow more hits to found in fewer roundtrips.

* NO_STRUCTURE excludes the structure from the return data of the Molecule or Reaction entity.
This flag is useful if the client already has the structure or if this data is not necessary. WAN
performance is improved by using this flag because structure data can form a large part of the
retrieved data.

Filtering particular sources

If more than one database can return data for a particular area or flag, your application might want to filter
out a particular data soutce. To do this, use the sour ceFi | t er of the Ser vi ceRequest . Data from
any Dat asour ce type specified in the array will not be retrieved.

In addition, this Sour ceFi | t er can affect the way the search is performed. If the search knows that a
particular source is not required, that source is removed from the search, thereby improving performance.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 7

DiscoveryGate Web Service

Exclusive Hits

Stateful Searches

Under normal circumstances, the selection of the Retrieval Flag does not affect the way the search is
performed. The hits are normally found for the search and the related data is then serialized with the
objects returned from the hits. However, if a particular area of data is the reason for the search, it is useful
to retutn hits so/ely if such data is present. The developer can set the excl usi veH t s member of the
Ser vi ceRequest to return hits if, and only if, data exists for the specified Retrieval Flags.

The flag is only effective against certain Molecule methods and does not apply to Reaction searches.

Because the ID_ONLY flag excludes all other retrieval flags, the behavior of the exclusive flag is special.
By default, when these flags are used in combination, all entitled sources are required to be present in the
data for the hit to found. However, the sour ceFi | t er can be used to exclude sources from this
requirement. This allows the developer to specify which sources must be present to return a search hit.

For performance, consider using stateful searches. With stateful searches, the query is only run once on
the server, saving time.

By default, each method call to the service is stateless. Any method call can be made at any time and each
call is handled separately by the service. For most use-cases, stateless methods give adequate performance.
Stateless methods do not require starting and ending a session. However, because each method call is
stateless, paging through large result sets require the service to re-run the query for each page offset.

If the number of hits required is large, the number of method calls can be high (even when using the
ID_ONLY retrieval flag). Therefore, the search is run repeatedly to obtain the previous position in the set
of hits, which is detrimental to performance.

For this situation, use the stateful mode by setting the st at ef ul Quer yKey member of the
Ser vi ceRequest . The value of this key is defined by the developer. If this key is set, the quety is held
open for re-use to generate the hits, which avoids the overhead of re-querying.

Limitations on stateful queries

To get details about limitations to stateful queries, use the get Ser vi cel nf or mati on() method to
access fields on the Ser vi cel nf or mat i on class, such as:

* maxSt at ef ul Queri es, the number of concurrent stateful queries the service allows the users of a
given license key.

« stateful QueryTi meout, the time limit on any stateful query. If a key is re-used outside of that
timeout, the query will be re-run and the performance will be identical to the stateless mode.

If you have an open stateful query and run the same method with different parameters (or a different
method), the service uses the existing parameters as stored in the stateful query rather than the new
parameters.

Before you attempt to te-use a query key to start a new quety, call the cl oseSt at ef ul Query()
method with the open query key.

8 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWSOverview

Glossary of Key Terms

DataPage

DGWS classes

WSDL

Service Request

Generally, DGWS is stateless, and it is common that to retrieve all the hits of a query, you call a get
method (such as getMoleculesByStructure) multiple times, each time with a different offset: 0, 50, 100,
and so on. The DataPage object holds the offset and count for the current retrieval of hits.

If you develop a client application using a tool such as Visual Studio .NET, you will see DGWS classes,
such as Avai | abi i ty and Scr eeni ng. The DGWS classes correspond to entities related to a data
source. For example, Avai | abi | i ty comes from the ACD data source. See the diagrams in the
Retrieval Flags chapter. The API Reference refers to "objects" that are instances of DGWS classes.

The DGWS Web Service Description Language (WSDL) enables an integrated development
environment, such as Microsoft Visual Studio .NET, to provide you an XMI-based remote application
programming interface (API) in a programmer-friendly way. Your application needs to make a web
reference to the URL with the WSDL.

Each call to the DGWS must include your valid license key. In this sense, the service is stateless. DGWS
returns up to a certain number of hits, so if your query has more than that maximum, you must re-launch
the query with an offset value in the page. The offset should correspond to the maximum number of hits
returned.

Currently the limits are 1000 for Retrieval Flag = ID_ONLY and 200 for all other retrievals. The limits
can change without notice so Accelrys recommends that you get the limits by calling the
get Servi cel nf or mat i on method.

Existence Request

Retrieval Flag

schema

In general, an application using DGWS does not need to care about which particular DGWS data
source(s) the data is coming from. However, if you need to know that a particular structure is in, for
example, the ACD data source, use the EXi st enceRequest class.

Note: To discover which data sources a given structure appears in, use the getMoleculesByStructure
method with the SOURCE_SUMMARY flag,.

To ensure that your search retrieves only the information that you want, DGWS has special filters known
as retrieval flags. Your application can use different the retrieval flag(s) for different queries. See Retrieval

Flags.

The DGWS schema is the object model, and is similar to an entity-relationship diagram (ERD), except
that it corresponds to the structure of the service and is not an exact representation of the underlying data
sources. To learn what kinds of data are available to what kinds of DGWS classes (entities), see the

Object Model chapter.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 9

DiscoveryGate Web Service

Stateful Service

DGWS provides the capability to transform existing stateless method calls into stateful ones. See Service

Overview for Client Application Developers and the Tutorial.

Serialization Chain

The serialization chain is the route that DGWS uses, given its object model, to provide access to a specific
type of data. The Retrieval Flags chapter has diagrams that show sections of the object model that pertain
to a give type of data.

Vocabulary

A vocabulary in a DGWS data source is a controlled list of allowed terms that correspond to standardized
data fields for a given data source. DGWS provides vocabularies for Classification, Procurement,
Reaction, and Toxicity. For example, among the over 1200 vocabulary items in ClassificationVocabulary
are " Ace I nhibitor"”,"Al DS Vacci ne",and " AMPA Recept or Ant agoni st".

See also the API Reference for get Cl assi fi cati onVocabul ary, get Reacti onVocabul ary,
and get Toxi ci t yVocabul ary, as well as the Tutorial on Retrieving and Caching Vocabularies (C#)
or Retrieving and Caching Vocabularies (Java).

URLs

DiscoveryGate Web Service (DGWS) home page

https://ww. di scoverygat e. com webservice/ 1. 2/

WSDL for the Discovery Gate Web Service
https://ww. di scoverygat e. conf webservi ce/ 1. 2/ DGANS?WSDL

schema for the Discovery Gate Web Service
The 1.2 version has two schemas:
https://ww. di scoverygat e. com webservi ce/ 1. 2/ schema/ DGAS- 1. 2. 700. xsd
for the main XML schema and
https://ww. di scoverygat e. com webservi ce/ 1. 2/ schema/ DGA5- t ypes- 1. 2. 700. xsd

for the XML schema that is being included into the main schema file.

Developer’s Guide
https://ww. di scoverygat e. coni webservi ce/ 1. 2/ docs/ devgui de/ i ndex. ht m
which is also available in PDF as

https://ww. di scoverygat e. conf webservi ce/ 1. 2/ docs/ devgui de/ dgws- devgui de. pdf

The API reference

https://ww. di scoverygat e. coni webservi ce/ 1. 2/ docs/ api - ref erence/ i ndex. ht m

10 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWSOverview

Product marketing home page for DGWS

http://ww. symyx. coni product s/ sof t war e/ dat abase- access/ web-servi ces/i ndex. j sp

C# and Java

The source code underlying DGWS is written in Java. To write a client application in a different language, such as
C#.NET, you must reinterpret some Java-centric aspects of this API Reference. For example, .NET uses
Properties where Java uses get and set methods.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 11

DiscoveryGate Web Service

12 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

Retrieval Flags

Overview

Stateless service

DGWS provides both Molecule Retrieval Flags and Reaction Rettieval Flags. Molecule and reactions flags
control the data that the DiscoveryGate Web Service (DGWS) returns in Molecule and Reaction records.
To improve performance and bandwidth usage by downloading only relevant data, use the retrieval flags.

Note: To learn how to set tetrieval flags in a Ser vi ceRequest , see the API Reference.

Generally speaking, DGWS is a stateless service. Except for molecule ID_ONLY and reaction
ID_ONLY, which can return up to 5000 hits, all the other flags return at most 50 hits. Therefore, to get
the next 50 hits, set a value for the offset and re-execute the API method. To collect all the possible hits,
each method call requires that your code increment the offset until less than 50 hits are returned.

Combining molecule flags

You can combine certain flags together. For example, if you want

mol = Get Mol ecul e(Get Servi ceRequest (Mol ecul eRetri eval Fl ags. TOXI C_EFFECT,
Mol ecul eRetri eval Fl ags. LI TERATURE), nol Nane, nol Fornul a);

Data source level and the "top-level" index

sourceFilter

DGWS has a "top-level" index that is hierarchically above the data from the data source level, that is, data
from any of the DGWS data sources (ACD, SCD, TOX, MDDR, and so on). The methods in the API
allow your application to retrieve data from both levels without you having to consider which data source
the data is from.

You can add properties (calculated properties, such as molweight) to the top-level by using the
SOURCE_PROPERTIES flag. Likewise you can add the structure at the top-level with the
SOURCE_STRUCTURE flag. You can also see the top-level structures and Ids collected into a single
hierarchy by using the SOURCE_SUMMARY flag that lists the datasources that have the structure you
are searching for.

You also have the option to consider specific data sources and return data from both the top-level and the
data source level. For example, the Avai | abi | i t y DGWS class comes from the ACD data source. The
Scr eeni ng DGWS class comes from the SCD data source. Both Avai | abi | i ty and Scr eeni ng
are returned with the PROCUREMENT_SUPPLIER or PROCUREMENT. PRICING flag. If you have
access to both data sources, but do not want data from one of these data sources, filter-out that data
source by using the sour ceFi | t er of the Ser vi ceRequest object. The sour ceFi | t er can also
be used to filter out the combined sources for a number of retrieval flags and also Reactions (see the API
Reference).

You can also filter out Names and Properties from the data sources you have access to. In this case,
properties are from the data source-level because the structure can differ at this level from the top-level
index.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 13

DiscoveryGate Web Service

Note: It is not possible to search computed structure properties.

Combining molecule and reaction flags

Molecule to reaction

In certain cases, it is possible to combine a molecule retrieval flag and a reaction retrieval flag. For
example, you can use the REACTION_PRODUCT flag on a Molecule to get a Reaction. From that
Reaction, you can use a reaction retrieval flag, such as CITATION.

Reaction to molecule

Similarly, you can use the MOLECULE flag on a Reaction to get a Molecule. From that Molecule, you
can use a molecule retrieval flag, such as PROCUREMENT_SUPPLIER.

Note: An attempt to go from Reaction to Molecule, then back to Reaction would cause an infinite loop
and is not allowed. Therefore, in this example, once you get from Reaction to Molecule, an exception is
thrown if you try to use a reaction flag such as REACTION_PRODUCT.

Flags and search hits

14

In most cases, setting a flag can change the number of search hits that DGWS returns. For example, an
exact search with no flags on the Molecule known as acetylsalicylic acid returns one (1) top-level (DGWS
index) hit that includes the following top-level data: i d, St r uct ur e, dat asour ce, nol f or mul a,
nol wei ght , nemakey, nenakeyst at us, and st noddat e. This search returns zero (0) lowet-level
hits from any external data soutce.

Adding the DRUG flag retrieves one (1) lower-level hit from the MDDR external data source, which
contains additional data for conpani es, | i censes, sour ces, and t r adenar ks.

However, the following flags do not change the number of hits. Rather, they change the #pe of data
returned: ID_ONLY, NO_STRUCTURE, SOURCE_PROPERTIES, SOURCE_STRUCTURE. In the
case of acetylsalicylic acid, the hit count remains one (1) top-level (DGWS index) hit and no lower-level
(external data source) data. For example, setting | D_ONLY causes DGWS to exclude all the top-level data
except the i d.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

Molecule Retrieval Flags

Molecule retrieval flags also apply both to methods that retrieve molecules and to methods that retrieve
reactions at the top level, when Molecules (such as reactants) are retrieved at a lower level by specifying
Reacti onRetri eval Fl ags. MOLECULE

Here is an example that specifies a particular retrieval flag, IDENTIFICATION:

Mol ecul eResul ts nr =
rds. get Mol ecul esByStruct ure(Get Servi ceRequest (Mol ecul eRetri eval Fl ags. | DENTI FI CATI ON) ,
my Mol ecul eSear chArray) ;

CARCINOGENIC

Use case: to get carcinogenic data, such as lethal concentration, for a given chemical substance.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 15

DiscoveryGate Web Service

CLASSIFICATION

Use case: To get data such as the drug activity (such as Analgesic, Antirheumatic) of a given chemical
substance.

16 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

DRUG

Use case: To get drug-related data for a given chemical substance: conpani es, | i censes, sour ces,
and t r ademar ks.

ID_ONLY
Use case: To get only the ID number of the molecule. See Flags and search hits.

Note: This flag is stateful, so you do not need to (re)set an offset to get more than 50 hits. However, the
maximum number of hits is 5000.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 17

DiscoveryGate Web Service

IDENTIFICATION

Use case: To retrieve data in the names and external arrays of Molecules returned from DGWS. If this flag
is not present, hanmes will be null.

LITERATURE

Use case: To get literature citations for a drug,.

18 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

NO_STRUCTURE

Use case: To improve performance by omitting the transmission of the structure molfile string, which can
be useful if there is no need to render the molecule. See Flags and search hits.

PROCUREMENT_PRICING

Use case: To get product data with the sublevel of Package (which has pricing information), but without
the sublevel of ProductData, which is available by using PROCUREMENT_ PROPERTIES.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 19

DiscoveryGate Web Service

PROCUREMENT_PRODUCT

Use case: To get product data without the sublevels of ProductData and Pricing, which are available with
PROCUREMENT_PROPERTIES (ProductData) and PROCUREMENT _PRICING (Package).

20 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

PROCUREMENT_PROPERTIES

Use case: To get product data with the sublevel of ProductData but without the sublevel of Package,
which is available by using PROCUREMENT_PRICING.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

21

DiscoveryGate Web Service

PROCUREMENT_SUPPLIER

Use case: To get a list of the companies that supply a specific chemical substance.

Note: Distributor and Catalog, although related, are not serialized by this flag,

22 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

PROPERTIES

Use case: To get the chemical properties (such as HDONORS and CLOGP) for a specific chemical
substance from the data-source level.

REACTION_PRODUCT

Use case: To get a a reaction that yields a specific molecule as a product.

See Combining molecule and reaction flags.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

23

DiscoveryGate Web Service

REACTION_REACTANT

Use case: To get a a reaction that uses a specific molecule as a reactant.

24 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

SOURCE_PROPERTIES

Use case: To get only the "top-level" data from the DGWS index instead of getting data from the data
source level. See Flags and search hits.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

25

DiscoveryGate Web Service

SOURCE_STRUCTURE

Use case: To get the molfile string from the data source . See Flags and search hits.

26 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

SOURCE_SUMMARY

Returns the dat asour ce list for a given structure, along with that structure’s conpound| d for each
data source. Data sources includes both Discovery Gate source databases (such as ACD, TOX, MDDR)
as well any external data sources (such as PUBCHEM) that also contain the structure.

The listing of structure Ids in external sourcess is limited to structures that are also in one or more DGWS
data sources, and the structure itself is not returned. However, if SOURCE_SUMMARY flag is used in
combination with SOURCE_STRUCTURE flag, then DGWS also returns the molfile string of that

structure from each of the data sources.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 27

DiscoveryGate Web Service

TOXIC_CHEMICAL

Use case: To get a list of initiators and promoters related to the toxicity of a molecule.

28 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

TOXIC_EFFECT

Use case: To get data about the toxic effects and lesions associated with a specific molecule.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

29

DiscoveryGate Web Service

Reaction Retrieval Flags

CITATION

Use case: to get data about literature citations for a specific reaction, such as aut hor ,j our nal Coden,
journal Pg.

30 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

Retrieval Flags

DISCRETE_CLASS_CODES

Use case: to get the classification codes of a given reaction:
* broad (atoms of the reaction center)
* nmedi um(includes the alpha atoms)

* narrow (alpha and beta atoms).

ID_ ONLY

Use case: To get only the ID number (r xnrmdl nunber) of the reaction.

Note: This flag is stateful, so you do not need to (re)set an offset to get more than 50 hits. However, the

maximum number of hits is 5000.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

31

DiscoveryGate Web Service

MOLECULE

Use case: For a given reaction, to get molecule data about a reactant, product, or catalyst. See Flags and
search hits as well as REACTION_PRODUCT and REACTION_REACTANT.

NO_STRUCTURE

Use case: To improve performance by omitting the transmission of the structure rxnfile string, which can
be useful if if there is no need to render the reaction. For a reaction, the top-level data includes the
rxnmdl nunber, dat asour ce,and max Overal | Yi el d. See Flags and search hits.

32 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

PATHS_AND STEPS
Use case: to get data for each pat h and st ep (including SUMVARY) of a reaction.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

33

DiscoveryGate Web Service

SCHEME

Use case: To get a reaction scheme. A portion of a scheme is shown below.

34 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

RetrievalFlags

STEP_CONDITIONS

Use case: To get the conditions of the steps in a reaction scheme, such as ph Max, st epno, and ti me
Max.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 35

DiscoveryGate Web Service

36 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

ObjectModel

Object Model

Overview

Limitation

Some Integrated Development Environments (IDEs), such as Eclipse Helio, Oracle JDeveloper, or
Microsoft Visual Studio, can show the object model of the Discovery Gate Web Service as a diagram. The
object model diagram is similar to an entity-relationship diagram about the data sources your client
application can access through the Discovery Gate Web Service. To work with the diagram:

1. Open Mol ecul e. xsd in the IDE tool. This file is named Mol ecul e. xsd because it contains the
metadata of the Mol ecul e object.

2. Expand any DGWS class (entity) you want.

For a small number of DGWS classes, the IDE might allow the data to be shown recursively. Although in
such cases, the graphical representation appears as a sort of infinite loop, the actual dynamic serialization
of the DGWS service avoids the issue.

Note: The relationships between Molecule, on the one hand, and Company and Product, on the other,
are actually mediated by the Availability and Screening classes, which are subsumed under Molecule.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 37

DiscoveryGate Web Service

38 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

DGWS Tutorial for Java Client

This tutorial explains the key concepts that are illustrated in its sample applications:

“Example 1 - basic service request” on page 41

“Example 2 - get a structure” on page 43

“Example 3 - One structure as input for SSS search” on page 44

“Example 4 - complex search with parentheses” on page 47,

“Example 5 Converting structure types’” on page 50

“Example 6 - Vocabularies” on page 51

“Example 7 - stateful and stateless searches” on page 54

Running Tutorial Code

The following tutorial has been developed using the popular, free Eclipse Java IDE (Helios) which can be
downloaded from http://www.eclipse.org/downloads/

For this tutorial you will need the "Eclipse IDE for Java EE Developets" for your specific platform.
However, the tutorial should also work with an earlier version of Eclipse.

Prerequisites

We assume that Eclipse and a Java 1.6 SDK has been installed, and that the user knows how to use
Eclipse and write code in Java.

First Steps Accessing the Web Service

Step 1: Creating an Eclipse Project for the DGWS Java Client

1.

2.

Start your Eclipse IDE and create a new project called DGWSJavaTutorial.

You should have a new Java project with one folder called 'stc’. Right-click the stc folder and select

"New >" and then "Other..." (or just type [CTRL]+[N]).

a. In the dialog that displays, scroll down to the section "Web Services" and select "Web Service
Client". Click "Next >"

b. In the "Service definition:" box, type the URL to the DGWS WSDL:
https:/ /www.discoverygate.com/websetvice/1.2/DGWS?wsdl

c. In the "Client type:" drop-down, keep the option "Java Proxy".
d. Move the slider down until it says "Assemble client".
e. Make sure that the box "Monitor the Web service" is unchecked.

f. Click "Next >" and leave the suggested "Output folder" unchanged.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

39

DiscoveryGate Web Service

g. Click "Finish"

h. Wait until the following two new Java packages are created under the 'src' foldet”

com.discoverygate.webservice
» com.discoverygate.webservice.types

Take some time to browse through the generated Java classes, especially the ones in the types package.

We are now ready to build our first tutorial client.

Step 2: Creating a Service Request and Getting Service Information
1. Right mouse-click on the 'src' folder again and select "New >" ? "Class"

2. Enter com.discoverygate.tutorial as Package and Examplel as Name. Make sure to check the box
"public static void main(String|] args)" to generate the main method.

3. Click "Finish"

You should now have a skeleton class file, which we will use to write our first example. Modify the class

skeleton as shown below:

40 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

Example 1 - basic service request

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;

import com.discoverygate.webservice.types.Servicelnformation;
import com.discoverygate.webservice.types.ServiceRequest;

public class Examplel {

private static final String LICENSE_KEY = "<Your license key goes here>";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
return sr;

}

/**
* @param args
*/
public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();
try {
DGWS service = dg.getDGWS();
Servicelnformation si = service.getServicelnformation(createSr());
System.out.printin("Service Version: " + si.getVersion());
System.out.printin("Copyright: " + si.getCopyright());
} catch (RemoteException e) {
e.printStackTrace();
} catch (ServiceException e) {
e.printStackTrace();
}

To execute the example class in Eclipse:

In the Eclipse "Project Explorer” select your newly create class "Examplel.java" and right-click. From the

pop-up menu, select "Run As >" and then "Java Application". This executes the "main()" method of the

currently selected Java class file.

The output is printed into the "Console" windows, which is usually in a separate pane at the bottom of

your Eclipse window.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

41

DiscoveryGate Web Service

NOTE: When running your examples inside Eclipse, you might see a Warning in the console similar to
the following:

Nov 17, 2010 12:18:44 PM org.apache.axis.utils.JavaUltils isAttachmentSupported
WARNING: Unable to find required classes (javax.activation.DataHandler and
javax.mail.internet.MimeMultipart). Attachment support is disabled.

We can safely ignore this warning because we did not add a library to the classpath that the web services
framework Apache Axis depends on. A more detailed description of this issue and a potential solution can
be found at

http://help.eclipse.org/helios/index.jsp?topic=/org .eclipse.wst.doc.use
r/topics/limitations.html
Step 3: Using a Method that Returns a Structure

The following example makes a call that returns the structure for "Aspirin".

Similar to the example above, we create a new class inside the same com.discoverygate.tutorial
package , but this time call it Example2 .

42 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

Example 2 - get a structure

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;
import com.discoverygate.webservice.types.Datasource;
import com.discoverygate.webservice.types.Molecule;

import com.discoverygate.webservice.types.MoleculeResults;
import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.ServiceRequest;

public class Example2 {
private static final String LICENSE_KEY = "<Your license key goes here>";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
MoleculeRetrievalFlags[] mrf = new MoleculeRetrievalFlags[|{};
sr.setMoleculeFlags(mrf);
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

}

/**
* @param args
*/
public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();
try {
DGWS service = dg.getDGWS();
String[] names = new String[J{"Aspirin"};

MoleculeResults mr = service.getMoleculesByNames(createSr(), names);
System.out.printin("We got " + mr.getContainedCount() + " result(s).");
System.out.printin("Query count is " + mr.getQueryCount());
Molecule[] molecules = mr.getRecords();
System.out.printin(“The structure for the first found molecule is (Mol File):");
System.out.printin(molecules[0].getStructure());

} catch (RemoteException e) {
e.printStackTrace();

} catch (ServiceException e) {
e.printStackTrace();

}

}

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

43

DiscoveryGate Web Service

Step 4: Searching for Molecules and Reactions

Example 3 - One structure as input for SSS search

Suppose you do a search with one element in the MoleculeSearch array that has sodium acetylsalicylate as
the input structure and MoleculeSearchType.SUBSTRUCTURE as the type. This returns any
molecule for which Sodium Acetylsalicylate is a substructure.

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;

import com.discoverygate.webservice.types.Datasource;

import com.discoverygate.webservice.types.Molecule;

import com.discoverygate.webservice.types.MoleculeResults;
import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.MoleculeSearch;
import com.discoverygate.webservice.types.MoleculeSearchType;
import com.discoverygate.webservice.types.Parenthesis;

import com.discoverygate.webservice.types.SearchOperator;
import com.discoverygate.webservice.types.ServiceRequest;

public class Example3 {

private static final String LICENSE_KEY = "77B9858A9E8D6F7BE0401EAC16FD2EAG";

/I The following represents Sodium-qacetylsalicylate

private static final String MOL_CHIME_STRING =
"CYAAFQWAYewQFPfJfx616ZLb6rNugDNdp8dA8cRIkKkpZ55HBpDGtTgMMRQ$XWYIhOMENYV9Z61cS98biuRVPY8whVCD
x5e6NILuAen5LsA$j1$6Gaty9$tIzeoTfv$03GKHBINF NKI"RCJIY pzLUw2SgFDaACHDIRBxk4MgoaKDVGYIPxcfvpQ4
aGC7Sph4S0OgCzvxaR0g1olMiK2EqgiyHkiKYgaN51gxOXSXrZeYQSdi$smMIDSxNy1InA4iWYsbgF6oL30MVZj2gSCO5N
NgWjgGXyIRyNOY638ezmbK8IuWXXxoEMrtoSFNnfB3x1kY4M1/nQUVIV4I7$iudF*Q Y NfeQLIPKUUUWQKSq22110b71Z
RMnUfSwVvy92cm0OaaqRdAKSKuk0TryKb$NuSymq580WEf1M1HY5w7Vwocufewm7e7MN8fTeTvjiA";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
MoleculeRetrievalFlags[] mrf = new MoleculeRetrievalFlags[|{};
sr.setMoleculeFlags(mrf);
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

44 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

/**

* @param args

*/

public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();

try {
DGWS service = dg.getDGWS();

MoleculeSearch[] molSearches = new MoleculeSearch[1];
MoleculeSearch moleculeSearch = new MoleculeSearch();
moleculeSearch.setStructure(MOL_CHIME_STRING);
moleculeSearch.setSearchType(MoleculeSearchType.SUBSTRUCTURE);
moleculeSearch.setBooleanOperator(SearchOperator.NONE);
moleculeSearch.setParenthesis(Parenthesis.NONE);
moleculeSearch.setCustomFlags(™);
molSearches[0] = moleculeSearch;
MoleculeResults mr = service.getMoleculesByStructure(createSr(), molSearches);
System.out.printin("We got " + mr.getContainedCount() + " result(s).");
System.out.printin("Query count is " + mr.getQueryCount());
Molecule[] molecules = mr.getRecords();
System.out.printin("The structure for the first found molecule is (Mol File):");
System.out.printin(molecules[0].getStructure());

} catch (RemoteException e) {
e.printStackTrace();

} catch (ServiceException e) {
e.printStackTrace();

}
}
}

Note: If the 'not' member of the MoleculeSearch element is set to true (moleculeSearch.setNot(true)), the
search returns any result molecule for which the input structure is NOT a substructure.

Understanding offsets

In the example above, the printout for the number of results is 10 while "Query count" shows -1 (in the
previous example the two numbers were the same). This is an important concept to understand.

The property containedCount always represents the actual number returned in this specific result.
Since we set our page size to 10, containedCount will be that same number as soon as the total
number of results is larger than our page size. Such a case will be indicated by setting queryCount
equals to -1, telling us that there are more records to be retrieved.

So, how can we retrieve the additional records? The answer is by changing the gffses value to a value such as
10 in the DataPage for our cutrent ServiceRequest , and then making the same service call again. If
this subsequent call will then return a queryCount of -1 again, we will have to increment the offset
again by the count value until our queryCount will have a value <> -1 and showing the total number or
results returned in this search.

Complex searches with nested parentheses

If your search criteria involve four or more structures with a mixture of ANDs and ORs, the logic might
require nested or double parentheses. For example, the following are different:

sss[structl] AND (sss[struct2] OR sss[struct3] OR sss[struct4])
(sss[structl] AND (sss[struct2] OR sss[struct3])) OR sss[struct4]

For the second case, indicate that the closing of struct3 is double parenthesis:

)

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 45

DiscoveryGate Web Service

that is, a parenthesis with a parenthesisCount of 2.

46 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

Example 4 - complex search with parentheses

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;

import com.discoverygate.webservice.types.Datasource;

import com.discoverygate.webservice.types.Molecule;

import com.discoverygate.webservice.types.MoleculeResults;
import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.MoleculeSearch;
import com.discoverygate.webservice.types.MoleculeSearchType;
import com.discoverygate.webservice.types.Parenthesis;

import com.discoverygate.webservice.types.SearchOperator;
import com.discoverygate.webservice.types.ServiceRequest;

public class Example4 {
private static final String LICENSE_KEY = "<Your license key goes here>";

/I The following represents Sodium-gacetylsalicylate
private static final String MOL_CHIME_STRING =

"7TbwCwtwA3FwWQEkegs760nEIRauPtmkwOGQ7 mdImIQfUAN2SFVD64HKwz3SfgslhcKMzulHnLViTvctuzbOh9GhLZwD

tS4ZFMGHOOM7vQx68FOfgxq7n70tyh1Bvfw9cHa5v4cS7USCZgZA6AWS$DKLGEVFONOojMiVGAADINNGDD6GtImCmFaDxV

BMeMnEDIEK6zxyc6R41bU4Mq6ujKpVHGR2kymm$1FHtVe7nggkooL GI$p85EIpnnRGgS006s1nbkASAVpd$kigpOXEpe
n1ITyiRXd30EPd"2dRX4Lfv2CEKRXtTDK5IwWSATY pVWWKEhcOfNTY2WAN$7q$U8j1p$wWVeU8zosWITS1VNkeY595vM3

EcT81t5yaSNZVUg5qMIELG79INhH3jbr4dYjosMwPrehnHTYtINVAZXC804FsX943pyN";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
MoleculeRetrievalFlags[] mrf = new
MoleculeRetrievalFlags[[{MoleculeRetrievalFlags.PROCUREMENT_PRICING};
sr.setMoleculeFlags(mrf);
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

}

/**

* @param args

*/

public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();

try {
DGWS service = dg.getDGWS();

T T T]
/I Four structures as input, reflecting the following logic:
Il (sss[structl] AND (sss[struct2] OR sss[struct3])) OR sss[struct4]

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

47

DiscoveryGate Web Service

I T

MoleculeSearch[] ms = new MoleculeSearch[4];
ms[0] = new MoleculeSearch();

final String sodiumAcetylsalicylateChimeString =
"TbwCwtwA3FwWQEkegs760nEIRauPtmkwOGQ7 mdIimIQfUAN2SFVD64HKwz3SfgslhcKMzulHnLViTvctuzbOh9GhLZwD
tS4ZFMGHOOM7vQx68FOfgxq7n70tyh1Bvfw9cHa5v4cS7USCZgZA6AWSDKLGEVFONOjMiVGAADINNGDD6GtImCmFaDxV
BMeMnEDIEK6zxyc6R4IbU4Mq6ujKpVHGR2kymm$1FHtVe7nggkooL GI$p85EIpnnRGgS006s1nbkASAVpd$kigpOXEpe
n1ITyiRXd30EPd"2dRX4LFV2CEKRXtTDKS5iwS TYpVWWKEhcOfnTY2WAI$7q$U8j1p$wWVeU8zosWITS1VNkeY595vM3
EcT81t5yaSNZVUqg5qMI6LG79INhH3jbrddYjosMwPréhnHTytINVAzZXC804FsX943pyN™;

ms[0] = new MoleculeSearch();
ms|[0].setParenthesis(Parenthesis.OPEN);
ms|[0].setSearchType(MoleculeSearchType.SUBSTRUCTURE);
ms|[0].setStructure(sodiumAcetylsalicylateChimeString);
ms[0].setBooleanOperator(SearchOperator.AND);
ms[0].setCustomFlags(");

final String benzeneChimeString =
"OYWVwf1AyBwQ3gtkYcHMxn6SfUljcwzqzPID8D$XQVR"sYiBrCgtPNrQn$rheTgQIzT6 G RidolhHIEKMhOmkXZnNv
AVRh0gQINKOpNzz5hHo0ZKO0ievzAktHdIX3db3WSEERVXLD8hLIYOVMEUADOOIPV1kFOGVLIMZgDNrFIULTDXvQDFWLho
iNg4owcDG4ul2FoAZXGn5I$vgIBNVEYETD5PdBWUCCQRKNhJ4SokqVx0879VKrIXV t4rinOZJC84YDgesveHkpcBKpG

ms[1] = new MoleculeSearch();
ms[1].setParenthesis(Parenthesis.OPEN);
ms[1].setSearchType(MoleculeSearchType.SUBSTRUCTURE);
ms[1].setStructure(benzeneChimeString);
ms[1].setBooleanOperator(SearchOperator.OR);
ms[1].setCustomFlags(™);

final String sodiumlonChimeString =
"8YASIZ5ALAWQ707uORgiVrMfibNYygfBA3MHLTNbBF5GJ3bLQNBSNF0Zk8QShFIQ5FILDpPFpHIL2uQoQRIbKaDK8KI
eKKOPAySqoczsxYjEcUohW23MTCBMpYu9XgfA4qoU7PDKJIS4HuUe6UVHIog761TNgn2PQXZs8pwBszb6q0d232DT5wc3y
BrSC";

ms[2] = new MoleculeSearch();

ms|[2].setSearchType(MoleculeSearchType.SUBSTRUCTURE);

ms[2].setStructure(sodiumlonChimeString);

ms|[2].setParenthesis(Parenthesis. CLOSED);

ms|[2].setParenthesisCount(2);

ms|[2].setBooleanOperator(SearchOperator.OR);

ms|[2].setCustomFlags(™);

final String napthaleneChimeString =
"JYAu$j7AIAWQBFHAYbSPhbKFN35N0aQLH2WEtPQgXdVXES EV]Y XsLooMEXRQS059cM5yG5V7UsxZaAavdCel7zBR
MCIitdFMxGGGw9b97vmybFNGK7vOYyArL8vwLVpPIneEA8dIQGWMA9AIQGV5wvHARhHaGRIEWOr8i6pgswloA2wqUrug7
gjdOPJRRY C”cuvVImixhldW4tuovpl$vw0O5LI4J7Wcolvz$eiHOAEQbZgdE7ZrjpngLXjtiztY Xe36PyfaLt*b3V18qM
5y3iSI6VZWmsFshStivYW130INZIJwXazW1WGtWrBFLRtNWWosbNFjDS8E8Rz8OXWAyYVK";

ms[3] = new MoleculeSearch();
ms[3].setParenthesis(Parenthesis.NONE);
ms[3].setSearchType(MoleculeSearchType.SUBSTRUCTURE);
ms[3].setStructure(napthaleneChimeString);
ms[3].setBooleanOperator(SearchOperator.NONE);
ms[3].setCustomFlags(™);

MoleculeResults mr = service.getMoleculesByStructure(createSr(), ms);

System.out.printin("We got " + mr.getContainedCount() + " result(s).");
System.out.printin("Query count is " + mr.getQueryCount());

48 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

Molecule[] molecules = mr.getRecords();
for(inti = 0; i < mr.getContainedCount(); i++) {
Molecule m = moleculesi];
System.out.printin("Molecule #" + (i+1) +":");
System.out.printin(*"Mol formula: " + m.getMolformula());
System.out.printin("Mol weight: " + m.getMolweight());
}
} catch (RemoteException e) {
e.printStackTrace();
} catch (ServiceException €) {
e.printStackTrace();
}
}

Step 5 : Converting Structure Types

The convertStructureToMolfile method supports converting an array of structures to the
molfile format. The source array can be in the SMILES format or the CHIME string format. The
following example returns an array of molfile strings generated from both SMILES and CHIME
string input.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

49

DiscoveryGate Web Service

Example 5 Converting structure types

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;
import com.discoverygate.webservice.types.Datasource;
import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.MoleculeSearch;
import com.discoverygate.webservice.types.ServiceRequest;

public class Example5 {
private static final String LICENSE_KEY = "<Your license key goes here>";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

}

/**

* @param args

*/

public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();
try {

DGWS service = dg.getDGWS();
final String benzeneSMILES = "clcccecl";

final String aspirinChime =

"CYAAFQWAYdwQyG"ZNk9IYNIUstICQzJ8VVSYygQOg7gx2Ggw39BNelHrolDNb20f5FQswgsFIwiB3R5XuCTKOri40Ooh2
MyP4iN$GbwRbdUYewRddVU$qDIA25ER2t$WQKbdbSEhJaEojkRz69ibv3jp94XZLKRpIUNf1kkqISSNIKUXqCR5600UB
O0ReWsRxSpgPItQ1MewK$uMFpSmeduAlPkjrT$$ixSKMCkjgDUHgANG537hp3JINM8xilV9oPaw31e5U$SUTnfIRHWS3XXa
EMKv0$01100ZG1EuUSTSUCB6QRqvIVICS7X7rv2Kvbcomf7VnlhUhv2qObT mJUBAtp1W17jsHzV JoTgIBKWSQPrypcnG

BX17$PfPgC4fzENMErA";

String[] structures = new String[] {benzeneSMILES, aspirinChime};

String[] molfiles = service.convertStructureToMolfile(createSr(), structures);

System.out.printin("Structure conversion:");
for(inti = 0; i < molfiles.length; i++) {
System.out.printin("" + structures][i] +" converts to :");
System.out.printin(molfilesi]);
}
} catch (RemoteException e) {
e.printStackTrace();

50 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

} catch (ServiceException e) {
e.printStackTrace();
}
}
}

Step 6: Retrieving and Caching Vocabularies

To ensure that your application has the latest version of data source vocabularies (see Vocabulary in the

¥ pp ry
glossary), use methods such as getClassificationVocabulary, getProcurementVocabulary,
getReactionVocabulary, and getToxicityVocabulary.

Your application can send the DGWS your vocabulary object. DGWS only returns a vocabulary if your
current vocabulary is out of date.

Note: DGWS does not send the entire vocabulary, only what is needed to be up-to-date.

Example 6 - Vocabularies

The following example is not realistic since insofar as requests are made within the same process and it is
unlikely that the version of the vocabulary changes. However, it does demonstrate a possible workflow:

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGateLocator;
import com.discoverygate.webservice.types.DataPage;

import com.discoverygate.webservice.types.Datasource;

import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.MoleculeSearch;
import com.discoverygate.webservice.types.ReactionVocabulary;
import com.discoverygate.webservice.types.RxnVocabltem;
import com.discoverygate.webservice.types.ServiceRequest;
import com.discoverygate.webservice.types.VocabularyVersion;

public class Example6 {
private static final String LICENSE_KEY = "<Your license key goes here>";

/*
* This method will create the minimal ServiceRequest object.
*/
private static ServiceRequest createSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(10);
sr.setPage(dp);
sr.setStatefulQueryKey(");
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 51

DiscoveryGate Web Service

/**

* @param args

*/

public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();

try {
DGWS service = dg.getDGWS();

/Il get the initial vocabulary
ServiceRequest sr = createSr();
ReactionVocabulary vocabl = service.getReactionVocabulary(sr, new VocabularyVersion());
System.out.printin("Reaction Vocabulary:");
long versionl = vocabl.getVersion();
System.out.printin(*Version =" + versionl);
RxnVocabltem[] vocabltems = vocabl.getVocabulary();
if(vocabltems != null) {
for(RxnVocabltem item: vocabltems) {
System.out.printin(“field =" + item.getField() + " - item =" + item.getltem());
}
}
/l now try it again
ReactionVocabulary vocab2 = service.getReactionVocabulary(sr, vocabl);
I/ this should be null now, since we don't anticipate any changes since the first call
if(vocab2 == null) {
System.out.printin("No changes between last call and now!");
}else {
RxnVocabltem[] newVocabltems = vocab2.getVocabulary();
if(newVocabltems == null) {
System.out.printin("No changes between last call and now!");
}else {
// this should not happen
System.out.printin("Updated version = " + vocab2.getVersion());
}
}

} catch (RemoteException e) {
e.printStackTrace();

} catch (ServiceException e) {
e.printStackTrace();

}
}
}

This example does the following:

1. Create a new empty vocabulary version and obtain the latest Reaction vocabulary from the service
storing it in the local variable vocab1.

2. 'Then, check with the service to get a new vocabulary, if available, passing in the vocabulary version
from the previously obtained vocabulary : ReactionVocabulary vocab2 =
service.getReactionVocabulary(sr, vocabl);

The vocabulary returned inside vocab2 is either null (no change) and the version did not change, or
it contains an array of the changed vocabulary items.

52 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

Advanced Techniques

Efficient Information Retrieval

Overview

DGWS implements a way to limit the amount of data being retrieved and transmitted over the wire
through Retrieval Flags (Molecule Retrieval Flags and Reaction Retrieval Flags). Molecule and reactions
flags control the data that the DiscoveryGate Web Service (DGWS) returns in Molecule and Reaction
records. To improve performance and bandwidth usage by downloading only relevant data, use different
retrieval flags.

Retrieval flags are being passed to each DGWS request as part of the ServiceRequest object as can be seen
in Example4. There are two different retrieval flag objects, MoleculeRetrievalFlags and
ReactionRetrievalFlags, and the Retrieval Flags should be added to the ServiceRequest as an array of those
objects.

The different Retrieval Flags actually affect the details retrieved for each service call which is discussed in
more details in the DGWS Developer’s Guide chapters about Molecule Retrieval Flags and Reaction
Retrieval Flags.

Stateful versus Stateless Searches

Generally speaking, as with most web services, DGWS is a stateless service. However, when using the
special Retrieval Flag ID_ONLY (for MoleculeRetrievalFlag as well as for ReactionRetrievalFFlag) method
calls returning MoleculeResults or ReactionResults can be stateful.

What exactly does "stateful" mean in the context of DGWS?

As pointed out above, DGWS has been designed and implemented to return large result-sets in "chunks"
rather than in one large block. For example, a substructure search (see Example3) may result in hundreds
if not thousands of hits. Returning all those results together with all requested details by using Retrieval
Flags may result in hundreds of kilo Bytes if not mega bytes being transferred over the wire back to your
client. Not only will it consume a huge amount of bandwidth, it also may result in timeout situations,
depending on your specific settings. So, instead DGWS will return the hits in "pages" of molecules or
reactions and it is the client's responsibility to iterate over all pages to retrieve all the results page by page.

The other important question to discuss will be: what is the fundamental difference between stateful and
stateless searches?

This is best answered using an example:

When running a stateful search, the only valid Retrieval Flag is ID_ONLY which will return only
molecule IDs or reaction IDs but no details at all.

Let us assume we want to do a substructure search using the structure of
4-(1H-PYRAZOL-1-YL)BENZENESULFONAMIDE. This search should result in approximately 900
molecules (the exact number depends on the version of the underlying content databases). At a page size
of 20 we will have to do approximately 45 calls using different offsets to retrieve all the results. If we use a
stateless search, every call to getMoleculesByStructure to retrieve a page will actually end up doing the
same search 45 times which is not very efficient.

On the other hand, when doing a stateful search, only the first call to getMoleculesByStructure will run the
actual search retrieving all 900+ ids but only returning the first page (20). Each subsequent call to
getMoleculesByStructure will simply retrieve the requested page without running the search again.
Although the stateful search will only return IDs, it is more efficient to use it when the search is expected
to run rather long and a large number of results is expected.

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved. 53

DiscoveryGate Web Service

However, after running a stateful search, what can you do with the resulting IDs? The answer is actually
pretty straight forward. You can use the IDs and pass them to a stateless call of getMoleculesByld page by
page and fortunately, the getMoleculesByld is extremely efficient so using separate calls is actually better
and faster than doing it all in one stateless getMoleculesByStructure call.

Example 7 - stateful and stateless searches

package com.discoverygate.tutorial;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import com.discoverygate.webservice. DGWS;

import com.discoverygate.webservice.DiscoveryGate;

import com.discoverygate.webservice.DiscoveryGatelLocator;
import com.discoverygate.webservice.types.DataPage;

import com.discoverygate.webservice.types.Datasource;

import com.discoverygate.webservice.types.Molecule;

import com.discoverygate.webservice.types.Moleculeld;

import com.discoverygate.webservice.types.MoleculeResults;
import com.discoverygate.webservice.types.MoleculeRetrievalFlags;
import com.discoverygate.webservice.types.MoleculeSearch;
import com.discoverygate.webservice.types.MoleculeSearchType;
import com.discoverygate.webservice.types.Parenthesis;

import com.discoverygate.webservice.types.SearchOperator;
import com.discoverygate.webservice.types.ServiceRequest;

public class Example7 {

private static final String LICENSE_KEY = "<Your license key goes here>";

/I The following represents 4-(1H-PYRAZOL-1-YL)BENZENESULFONAMIDE

private static final String MOL_CHIME_STRING =
"CYAAFQWAUfwQBtB2BKbFUafalusSO5MJJZaYDxVQKBN5FZaocjV5gksO80ASIQ$GwWS$mMiE4K0o3BSBEqN5BBKkHeVET7Xi
LdSYydecwxYxgjLfCy7F4QUyjDgs" cBQBOLXvIgM876HaZpRdUy0y9kpxAjbR*"NSzawes|7TKTMJaRPsOIIPhnh5*qOP
FAF6TYyy8UkIJWiF*"MFPP6GdXxqamQQKTKp2n6vGR0OVaXaunEiS1vbpo3mHgszCUVbPekC60Jczcz$sChXauAGyRI9ivL
pGx0OelHdVghi7S5IpIKBGcHyQsgedSikoDWKCKPx9Ka5yFjp4KHjT1qoLxdYgqqcqqVrgM$jdsXOMNWVYgGceNrsvVavyl
93Ddj2KLfIGIA1RkmRZSbvuVXg3kabdh*POcvEcZeMLDHAPT1rV602BwfnTOP";

/*

* This method will create the minimal ServiceRequest object.

*/

private static ServiceRequest createStatefulSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(20);
sr.setPage(dp);
/I supply some arbitrary stateful key
String statefulKey = String.valueOf(System.currentTimeMillis());
sr.setStatefulQueryKey(statefulKey);
MoleculeRetrievalFlags[] mrf = new

MoleculeRetrievalFlags[[{MoleculeRetrievalFlags.ID_ONLY};

sr.setMoleculeFlags(mrf);
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

54 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DGWS Tutorialfor Java Client

}

private static ServiceRequest createStatelessSr() {
ServiceRequest sr = new ServiceRequest();
sr.setLicenseKey(LICENSE_KEY);
DataPage dp = new DataPage();
dp.setOffset(0);
dp.setCount(40);
sr.setPage(dp);
sr.setStatefulQueryKey(");
MoleculeRetrievalFlags[] mrf = new MoleculeRetrievalFlags[|{};
sr.setMoleculeFlags(mrf);
Datasource[] sourceFilter = new Datasource[]{Datasource.CINDEX};
sr.setSourceFilter(sourceFilter);
return sr;

}

/**

* @param args

*/

public static void main(String[] args) {
DiscoveryGate dg = new DiscoveryGateLocator();

try {
DGWS service = dg.getDGWS();

MoleculeSearch[] molSearches = new MoleculeSearch[1];
MoleculeSearch moleculeSearch = new MoleculeSearch();
moleculeSearch.setStructure(MOL_CHIME_STRING);
moleculeSearch.setSearchType(MoleculeSearchType.SUBSTRUCTURE);
moleculeSearch.setBooleanOperator(SearchOperator.NONE);
moleculeSearch.setParenthesis(Parenthesis.NONE);
moleculeSearch.setCustomFlags(™);
molSearches[0] = moleculeSearch;
ServiceRequest statefulSr = createStatefulSr();
int pageSize = statefulSr.getPage().getCount();
ServiceRequest statelessSr = createStatelessSr();
int page = 1;
do {
MoleculeResults mrStateful = service.getMoleculesByStructure(statefulSr,
molSearches);
int count = mrStateful.getContainedCount();
int overallCount = mrStateful.getQueryCount();
System.out.printin("We got " + count + " result(s).");
System.out.printin("Query count is " + overallCount);
Molecule[] molecules = mrStateful.getRecords();
Moleculeld[] mollds = new Moleculeld[count];
for(int i = 0; molecules != null && i < count; i++) {
long id = molecules[i].getld();
/I now we gather all the retrieved IDs into an array
Moleculeld molld = new Moleculeld(id);
mollds[i] = molid;
}
/I now make another stateless call to get the molecule details passing in our mollds
MoleculeResults mrStateless = service.getMoleculesByld(statelessSr, mollds);
System.out.printin("Results from page " + page +":");
for(inti = 0; i < mollds.length ; i++) {
System.out.printin("Molecule #" + i +": mol formula ="' +
mrStateless.getRecords(i).getMolformula() + ™");
}
if(overallCount > 0) {
/I we got all pages, lets exit this loop

Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

DiscoveryGate Web Service

System.out.printin("Retrieved all " + overallCount + " results - exiting");
break;
}
int currentOffset = statefulSr.getPage().getOffset();
statefulSr.getPage().setOffset(currentOffset + pageSize);
page++;
} while(true);
/l when done, we should ALWAYS call closeStatefulQuery using our stateful
ServiceRequest
service.closeStatefulQuery(statefulSr);
} catch (RemoteException e) {
e.printStackTrace();
} catch (ServiceException e) {
e.printStackTrace();
}
}

There are a few important facts to note about stateful searches:

1. The result of a statefule search will have to be cached on the server until all IDs have been retrieved
by the client. Since this will consume shared resources, a stateful query will automatically be closed
after 60 seconds of inactivity!

2. 'The search criteria provided in the ServiceRequest object cannot be changed after the first service
call. Doing this may have unpredictable results!

3. After the first stateful search, the offset in the given data page can only be increased. If the offset are
being decreased, i.e. retrieving results from previous pages, the search will have to be run again as
each ID that has been retrieved by the client will be cleared from the underlying cache and is not
accessible anymore without re-doing the search.

56 Copyright 2010 Accelrys, Inc. (formerly Symyx). All rights reserved.

	DGWS Overview
	Service Overview for Client Application Developers
	API Design Overview
	Metadata Methods
	Utility Methods
	Data Methods
	Paging data
	Retrieving data
	Filtering particular sources
	Exclusive Hits
	Stateful Searches
	Limitations on stateful queries

	Glossary of Key Terms
	DataPage
	DGWS classes
	WSDL
	Service Request
	Existence Request
	Retrieval Flag
	schema
	Stateful Service
	Serialization Chain
	Vocabulary

	URLs
	DiscoveryGate Web Service (DGWS) home page
	WSDL for the Discovery Gate Web Service
	schema for the Discovery Gate Web Service
	Developer’s Guide
	The API reference
	Product marketing home page for DGWS

	C# and Java

	Retrieval Flags
	Overview
	Stateless service
	Combining molecule flags
	Data source level and the "top-level" index
	sourceFilter

	Combining molecule and reaction flags
	Molecule to reaction
	Reaction to molecule

	Flags and search hits

	Molecule Retrieval Flags
	CARCINOGENIC
	CLASSIFICATION
	DRUG
	ID_ONLY
	IDENTIFICATION
	LITERATURE
	NO_STRUCTURE
	PROCUREMENT_PRICING
	PROCUREMENT_PRODUCT
	PROCUREMENT_PROPERTIES
	PROCUREMENT_SUPPLIER
	PROPERTIES
	REACTION_PRODUCT
	REACTION_REACTANT
	SOURCE_PROPERTIES
	SOURCE_STRUCTURE
	SOURCE_SUMMARY
	TOXIC_CHEMICAL
	TOXIC_EFFECT

	Reaction Retrieval Flags
	CITATION
	DISCRETE_CLASS_CODES
	ID_ONLY
	MOLECULE
	NO_STRUCTURE
	PATHS_AND_STEPS
	SCHEME
	STEP_CONDITIONS

	Object Model
	Overview
	Limitation

	DGWS Tutorial for Java Client
	Running Tutorial Code
	Prerequisites
	First Steps Accessing the Web Service
	Step 1: Creating an Eclipse Project for the DGWS Java Client
	Step 2: Creating a Service Request and Getting Service Information
	Example 1 - basic service request

	Step 3: Using a Method that Returns a Structure
	Example 2 - get a structure

	Step 4: Searching for Molecules and Reactions
	Example 3 - One structure as input for SSS search
	Understanding offsets
	Complex searches with nested parentheses
	Example 4 - complex search with parentheses

	Step 5 : Converting Structure Types
	Example 5 Converting structure types

	Step 6: Retrieving and Caching Vocabularies
	Example 6 - Vocabularies

	Advanced Techniques
	Efficient Information Retrieval
	Overview
	Stateful versus Stateless Searches
	Example 7 - stateful and stateless searches

